Andrew G. Barto

Andrew G. Barto is Professor Emeritus in the College of Computer and Information Sciences at the University of Massachusetts Amherst.

  • Reinforcement Learning, Second Edition

    An Introduction

    Richard S. Sutton and Andrew G. Barto

    The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

    Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

    Like the first edition, this second edition focuses on core, online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new for the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods.  Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

    • Hardcover $80.00
  • Reinforcement Learning

    Reinforcement Learning

    An Introduction

    Richard S. Sutton and Andrew G. Barto

    Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.

    Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

    The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Contributor

  • Robotics

    Robotics

    Science and Systems VIII

    Nicholas Roy, Paul Newman, and Siddhartha Srinivasa

    Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods.

    Robotics: Science and Systems VIII spans a wide spectrum of robotics, bringing together contributions from researchers working on the mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the eighth annual Robotics: Science and Systems (RSS) conference, held in July 2012 at the University of Sydney. The contributions reflect the exciting diversity of the field, presenting the best, the newest, and the most challenging work on such topics as mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.