[1]  Abramsky, S. (2012) Relational databases and Bell’s Theorem. Available at

[2]  Atiyah, M. (1989) Topological quantum field theories. Publications Mathématiques de l’IHÉS 68(1), 175–186.

[3]  Axler, S. (1997) Linear Algebra Done Right. 2d ed. New York: Springer.

[4]  Awodey, S. (2010) Category Theory. 2d ed. Oxford: Oxford University Press.

[5]  Bralow, H. (1961) Possible principles underlying the transformation of sensory messages. In Sensory Communication, ed. W. Rosenblaith, 217–234. Cambridge, MA: MIT Press.

[6]  Baez, J.C.; Dolan, J. (1995) Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics 36: 6073–6105.

[7]  Baez, J.C.; Fritz, T.; Leinster, T. (2011) A characterization of entropy in terms of information loss. Entropy 13(11): 1945–1957.

[8]  Baez, J.C.; Stay, M. (2011) Physics, topology, logic and computation: a Rosetta Stone. In New Structures for Physics, ed. B. Coecke, 95Ð172. Lecture Notes in Physics 813. Heidelberg: Springer.

[9]  Brown, R.; Porter, T. (2006) Category Theory: An abstract setting for analogy and comparison. In: What Is Category Theory? ed. G. Sica, 257–274. Advanced Studies in Mathematics and Logic. Monza Italy: Polimetrica.

[10]  Brown, R.; Porter, T. (2003) Category theory and higher dimensional algebra: potential descriptive tools in neuroscience. In Proceedings of the International Conference on Theoretical Neurobiology, vol. 1, 80–92.

[11]  Barr, M.; Wells, C. (1990) Category Theory for Computing Science. New York: Prentice Hall.

[12]  Biggs, N.M. (2004) Discrete Mathematics. New York: Oxford University Press.

[13]  Diaconescu, R. (2008) Institution-Independent Model Theory Boston: Birkhäuser.

[14]  Döring, A.; Isham, C. J. (2008) A topos foundation for theories of physics. I. Formal languages for physics. Journal of Mathematical Physics 49(5): 053515.

[15]  Ehresmann, A.C.; Vanbremeersch, J-P. (2007) Memory Evolutive Systems: Hierarchy, Emergence, Cognition. Amsterdam: Elsevier.

[16]  Everett III, H. (1973). The theory of the universal wave function. In The Many-Worlds Interpretation of Quantum Mechanics, ed. B.S. DeWitt and N. Graham, 3–140. Princeton, NJ: Princeton University Press.

[17]  Goguen, J. (1992) Sheaf semantics for concurrent interacting objects Mathematical Structures in Computer Science 2(2): 159–191.

[18]  Grothendieck, A.; Raynaud, M. (1971) Revêtements étales et groupe fondamental Séminaire de Géométrie Algébrique du Bois Marie, 1960/61 (SGA 1) Lecture Notes in Mathematics 224. In French. New York: Springer.

[19]  Krömer, R. (2007) Tool and Object: A History and Philosophy of Category Theory. Boston: Birkhäuser.

[20]  Lambek, J. (1980) From λ-calculus to Cartesian closed categories. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, ed. J.P. Seldin and J. Hindley, 376–402. London: Academic Press.

[21]  Khovanov, M. (2000) A categorificiation of the Jones polynomial. Duke Mathematical Journal 101(3):359–426.

[22]  Landry, E.; Marquis, J.-P. (2005) Categories in contexts: Historical, foundational, and philosophical. Philosophia Mathematica 13(1): 1–43.

[23]  Lawvere, F.W. (2005) An elementary theory of the category of sets (long version) with commentary. Reprints in Theory and Applications of Categories. no. 11, 1–35. Expanded from Procedings of the National Academy of Sciences 1964; 52(6):1506–1511.

[24]  Lawvere, F.W.; Schanuel, S.H. (2009) Conceptual Mathematics. A First Introduction to Categories. 2d ed. Cambridge: Cambridge University Press.

[25]  Leinster, T. (2004) Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series 298. New York: Cambridge University Press.

[26]  Leinster, T. (2012) Rethinking set theory. Available at

[27]  Linsker, R. (1988) Self-organization in a perceptual network. Computer 21(3): 105–117.

[28]  MacKay, D.J. (2003) Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press.

[29]  Mac Lane, S. (1998) Categories for the Working Mathematician. 2d ed. New York: Springer.

[30]  Marquis, J.-P. (2009) From a Geometrical Point of View: A Study in the History and Philosophy of Category Theory. New York: Springer.

[31]  Marquis, J.-P. (2013) Category theory. In Stanford Encyclopedia of Philosophy (summer ed.), ed. E.N. Zalta, Available at

[32]  Minsky, M. (1985) The Society of Mind. New York: Simon and Schuster.

[33]  Moggi, E. (1991) Notions of computation and monads. Information and Computation 93(1): 52–92.

[34]  nLab.

[35]  Penrose, R. (2005) The Road to Reality. New York: Knopf.

[36]  Radul, A.; Sussman, G.J. (2009). The Art of the Propagator. MIT Computer Science and Artificial Intelligence Laboratory Technical Report.

[37]  Simmons, H. (2011) An Introduction to Category Theory. New York: Cambridge University Press.

[38]  Spivak, D.I. (2012) Functorial data migration. Information and Computation 217 (August): 31–51.

[39]  Spivak, D.I. (2013) Database queries and constraints via lifting problems. Mathematical structures in computer science 1–55. Available at

[40]  Spivak, D.I. (2012) Kleisli database instances. Available at

[41]  Spivak, D.I. (2013) The operad of wiring diagrams: Formalizing a graphical language for databases, recursion, and plug-and-play circuits. Available at:

[42]  Spivak, D.I.; Giesa, T.; Wood, E.; Buehler, M.J. (2011) Category-theoretic analysis of hierarchical protein materials and social networks. PLoS ONE 6(9): e23911.

[43]  Spivak, D.I.; Kent, R.E. (2012) Ologs: A categorical framework for knowledge representation. PLoS ONE 7(1): e24274.

[44]  Weinberger, S. (2011) What is … persistent homology? Notices of the AMS 58(1): 36–39.

[45]  Weinstein, A. (1996) Groupoids: Unifying internal and external symmetry. Notices of the AMS 43(7): 744–752.

[46]  Wikipedia. Accessed between December 6, 2012 and December 31, 2013.