

From Computational Neuroscience Series
Neural Engineering
Computation, Representation, and Dynamics in Neurobiological Systems
Overview
Author(s)
Praise
Summary
For years, researchers have used the theoretical tools of engineering to understand neural systems, but much of this work has been conducted in relative isolation. In Neural Engineering, Chris Eliasmith and Charles Anderson provide a synthesis of the disparate approaches current in computational neuroscience, incorporating ideas from neural coding, neural computation, physiology, communications theory, control theory, dynamics, and probability theory. This synthesis, they argue, enables novel theoretical and practical insights into the functioning of neural systems. Such insights are pertinent to experimental and computational neuroscientists and to engineers, physicists, and computer scientists interested in how their quantitative tools relate to the brain.
The authors present three principles of neural engineering based on the representation of signals by neural ensembles, transformations of these representations through neuronal coupling weights, and the integration of control theory and neural dynamics. Through detailed examples and in-depth discussion, they make the case that these guiding principles constitute a useful theory for generating large-scale models of neurobiological function. A software package written in MatLab for use with their methodology, as well as examples, course notes, exercises, documentation, and other material, are available on the Web.
Hardcover
Out of Print ISBN: 9780262050715 380 pp. | 7 in x 9 in 104 illus.Paperback
$50.00 X ISBN: 9780262550604 380 pp. | 7 in x 9 in 104 illus.Endorsements
-
From principle component analysis to Kalman filters, information theory to attractor dynamics, this book is a brilliant introduction to the mathematical and engineering methods used to analyze neural function.
Leif Finkel
Professor, Neuroengineering Research Laboratories, University of Pennsylvania
-
In this brilliant volume, Eliasmith and Anderson present a novel theoretical framework for understanding the functional organization and operation of nervous systems, from the cellular level to the level of large-scale networks.
John P. Miller
Center for Computational Biology, University of Montana
-
This book represents a significant advance in computational neuroscience. Eliasmith and Anderson have developed an elegant framework for understanding representation, computation, and dynamics in neurobiological systems. The book is beautifully written and it should be accessible to a wide variety of readers.
Bruno A. Olshausen
Center for Neuroscience, University of California, Davis